Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain.
نویسندگان
چکیده
The design and testing of a new microelectrode array, the NCTU (National Chiao Tung University) probe, was presented. Evaluation results showed it has good biocompatibility, high signal-to-noise ratio (SNR: the root mean square of background noise to the average peak-to-peak amplitude of spikes) during chronic neural recordings, and high reusability for electrolytic lesions. The probe was a flexible, polyimide-based microelectrode array with a long shaft (14.9 mm in length) and 16 electrodes (5 microm-thick and 16 microm in radius); its performance in chronic in vivo recordings was examined in rodents. To improve the precision of implantation, a metallic, impact-resistant layer was sandwiched between the polyimide layers to strengthen the probe. The three-dimensional (3D) structure of electrodes fabricated by electroplating produced rough textures that increased the effective surface area. The in vitro impedance of electrodes on the NCTU probe was 2.4+/-0.52 MOmega at 1 kHz. In addition, post-surgical neural recordings of implanted NCTU probes were conducted for up to 40 days in awake, normally behaving rats. The electrodes on the NCTU probe functioned well and had a high SNR (range: 4-5) with reliable in vivo impedance (<0.7 MOmega). The electrodes were also robust enough to functionally record events, even after the anodal current (30 microA, 10s) was repeatedly applied for 60 times. With good biocompatibility, high and stable SNR for chronic recording, and high tolerance for electrolytic lesion, the NCTU probe would serve as a useful device in future neuroscience research.
منابع مشابه
Multi-electrode arrays technology for the non-invasive recording of neural signals: a review article
The recording of electrophysiological activities of brain neurons in the last half-century has been considered as one of the effective tools for the development of neuroscience. One of the techniques for recording the activity of nerve cells is the multi-electrode arrays (MEAs). Microelectrode arrays (MEAs) are usually employed to record electrical signals from electrogenic cells like neurons o...
متن کاملFunctional MRI of Cortico-Striato-Thalamal Circuit Using a Novel Flexible Polyimide-Based Microelectrode Array Implanted in Rodent Deep Brain
Introduction Electrical stimulation of the brain is an important tool in the treatment of the neural disease. The major goal of this study is to develop a rodent model of Parkinson’s disease (PD) to explore the therapeutic mechanisms of deep brain stimulation (DBS). Indeed, the investment in DBS research has spanned a diverse range of topics from how to assess and quantify efficacy of DBS in re...
متن کاملDesign, Fabrication, Simulation and Characterization of a Novel Dual-Sided Microelectrode Array for Deep Brain Recording and Stimulation
In this paper, a novel dual-sided microelectrode array is specially designed and fabricated for a rat Parkinson's disease (PD) model to study the mechanisms of deep brain stimulation (DBS). The fabricated microelectrode array can stimulate the subthalamic nucleus and simultaneously record electrophysiological information from multiple nuclei of the basal ganglia system. The fabricated microelec...
متن کاملLow-cost microelectrode array with integrated heater for extracellular recording of cardiomyocyte cultures using commercial flexible printed circuit technology
This article reports the use of commercial, flexible printed circuit technology for the fabrication of low-cost microelectrode arrays (MEAs) for recording extracellular electrical signals from cardiomyocyte cultures. A 36-electrode array has been designed and manufactured using standard, two-layer, polyimide-based flexible circuit technology, with electrode diameters of 75 and 100 m. Copper str...
متن کاملAn active, flexible carbon nanotube microelectrode array for recording electrocorticograms.
A variety of microelectrode arrays (MEAs) has been developed for monitoring intra-cortical neural activity at a high spatio-temporal resolution, opening a promising future for brain research and neural prostheses. However, most MEAs are based on metal electrodes on rigid substrates, and the intra-cortical implantation normally causes neural damage and immune responses that impede long-term reco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 182 1 شماره
صفحات -
تاریخ انتشار 2009